Ruga Ribbons Installation

Rug Ribbons installation designed by Jiangmei Wu. Photography by Tony Vasquez.
Rug Ribbons by Jiangmei Wu of Folded Light Art. Photography by Tony Vasquez

Ruga Ribbons is a 14 feet tall permanent sculpture commissioned by Rowland Design for Liberty Fund library that is located in Indianapolis. “Ruga” is the Latin word for making winkles, creases, pleats, and folds. Inspired by the use of winkling and folding in the material as a primary genesis of artistic forms, Ruga Ribbons is a digitally-precise form created from flat sheets of corrugated plastic material that mimics fabric-like ribbons. Suspended in the void of the main stairwell, Ruga Ribbons creates an ever-changing visual experience for people who come to interact with it as they move up and down the staircase.

Rug Ribbons installation designed by Jiangmei Wu. Photography by Tony Vasquez.
Rug Ribbons by Jiangmei Wu of Folded Light Art. Photography by Tony Vasquez

The building architecture and art displayed in the building, which was designed by Rowland Design, provided the initial inspiration for Folded Light Art’s use of abstract geometry. Folded Light Art then worked with Ignition Art, a fabricator and installer, on solving issues associated with unrolling a couple of hundred unique panels for digital cutting and assembly. These unique panels were then connected in order to create the two ribbons that are intertwined with one another.

Rug Ribbons installation designed by Jiangmei Wu. Photography by Tony Vasquez.
Rug Ribbons by Jiangmei Wu of Folded Light Art. Photography by Tony Vasquez

 

Stop-motion movie of Ruga Ribbons installation

See the above for a stop-motion movie, showing the installation-in-progress a wonderful crew from Ignition Arts, a designer/fabricator based in Indianapolis.

Ruga Swan at the Museum of Fine Arts, St. Petersburg, Florida

Check this new video about Ruga Swan by Fox 13 in Tempa

Tempa, Florida. Ruga Swan has been touring in the United States and Canada in the past five years. It has been to 13 museums so far. Many thanks to the Museum of Fine Art in St. Petersburg, Florida and International Art and Artists staff who did a great installation for this!

For more information about the tour, please check out the link below: https://www.artsandartists.org/exhibitions/above-the-fold/

Synergia Installation on Indiana University Bloomington Campus

Ari William enjoyed a musical moment at the Synergia Installation on IUB campus

In March 2018, I worked with two contractors and a group of volunteers to move the Synergia installation from the North Christian Church in Columbus, Indiana to the Indiana University Bloomington campus. The volunteers included my former students Tristin Moore and Siqiao Gao, and Bloomington High School South students Dexter Wu-corts and Levy Burdine. The site was the nice and quiet green space between the Simon Hall, Chemistry building, the Lindley Hall, and the Kirkwood Hall. It took us about four days to complete the job. While Synergia was originally designed for the site at the North Christian Church designed by Eero Saarinen, it also fitted well on IUB campus. The white pristine geometry worked in contrast with the Collegiate Gothic style structures in the background. The installation definitely had caught the eyes and curiosities of students and faculty who happened to walk by the area. For one instance, Molecular and Celluar Biochemistry professor Adam Zlotnick took his entire class to see the pavilion as Synergia’s cellular structure resembled the viruses they had been study. For anther instance, biology student Ari Williams, found peace and serenity in the pavilion while playing some guitar. He was amazed at how the cellular structure enhanced the acoustic experience in the outdoor on windy spring days (video above, shot with a iphone).

Exhibit Columbus University Installation: Synergia

Synergia_TONY3815_September 07, 2017_TonyVasquez_new_sml
Synergia at night, Columbus, Indiana. The building in the background is the North Christian Church by Eero Saarinen. Photography by Tony Vasquez

Installed on the site of Eero Saarinen’s North Christian Church in Columbus, Synergia is a public pavilion by the students of the IU School of Art, Architectuare + Design in Bloomington, who were directed by me in my D475 design studio in Spring 2017 and in the summer of 2017 as volunteers. The graduate students of the IUPUI School of Engineer and Technology in Indianapolis, directed by Professor Andre Tovar and myself in our ME59700 course in Spring 2017 on designing complex origami-inspired structures, also participated at this project by conducting the structural analysis and optimization. Synergia is open to the public at Exhibit Columbus between August 26th and November 26th, 2017 in Columbus, Indiana.

Synergia_TONY2427_September 04_edit-1_final._smljpg
Synergia during the day, Columbus, Indiana. The building in the background is the North Christian Church by Eero Saarinen. Photography by Tony Vasquez

Synergia embodies the reality of life, community, and harmony through its simple parts working together to create a complex and light-filled space. Sitting next to Eero Saarinen’s North Christian Church in Columbus, Indiana, the translucent quality of the light found in Synergia in the daylight alludes to the hushed secondary light radiating from the perimeter of Saarinen’s structure. Colored LEDs further illuminate Synergia at night, creating an ephemeral atmosphere as Saarinen’s concrete façade serves as a backdrop. The interplay of light and shadow, acting in conjunction with the movements of compression and expansion, creates a space that fosters peace and reflection.

Synergia_TONY3751_September 07, 2017_TonyVasquez_
Synergia during the day, Columbus, Indiana. Photography by Tony Vasquez

Synergia_TONY7776_September 15, 2017_TonyVasquez_(1)_sml
Synergia at night, Columbus, Indiana. Photography by Tony Vasquez

The generative seed for Synergia is a bisymmetric space-filling polyhedron that tessellates the space when stacked in interlocking layers. Over five hundred of the polyhedrons, measuring about two to three feet each, work together to form elongated hexagonal units. This hexagon geometry echoes the overall geometry of Saarinen’s mid-century modernist architecture and at the same time serves as the building block of a complex and diverse structure in a way that is similar to the development of biological forms, soap bubbles, and crystal patterns.

synergia_tony2480_september-04-2017_tonyvasquez_-e1505353978139.jpg
Bisymmetric space-filling polyhedron, the generative seed for Synergia. Photography by Tony Vasquez

Synergia is constructed of translucent corrugated plastic sheets that are made from recycled plastic and are one hundred percent recyclable. The plastic boards were laser cut at Noblitt Fabricating in Columbus Indiana and then hand folded like origami to form each of the structural units in the studio at IU. The origami folds add the structural strength to the otherwise light and flexible plastic sheet material without the need for additional framing and assemblage. These units were then bolted together to create the overall installation. The fold lines of each unit thus form an interconnected space lattice that is light and yet structurally sound.

The IU School of Art, Architectuare + Design is participating in Exhibit Columbus as a part of the University Installations together with five other schools including Ball State University, Ohio State University, the University of Cincinnati, the University of Kentucky, and the University of Michigan. For more information about university installations at Exhibit Columbus, visit https://exhibitcolumbus.org/exhibition/university-installations.

Credits:

Faculty: Jiangmei Wu (with Andre Tovar)

IUB Students: Amy Cunningham, Marguerite Fisher-Heath, Siqiao Gao, Hannah Holloway, Kylie Knipscheer, Guanyao Li, Tristin Moore, Anna Mui, Ariana Nunes, Michelle Smith, Emma Walsh, Ye Wang, Zhanhua Yan, Simin Yu, Lu Zhang, Jin Zhu

IUPUI Students: Aaron Berndt, Ryan Comer, Shweta Daule, Shantanu Sabade, Ashutosh Salunke, Pratik Shelke

Special thanks: I would like to thank many individuals, including my colleagues at IU SoAAD (Kelly Wilson, Marleen Newman, Peg Faimon, Ryan Mandell, Tai Rogers), Exhibit Columbus members (Janice Shimizu, Josh Coggeshall, Anne Surak and Richard McCoy), community members of Columbus (Tricia Gilson, Jerry Karr, and “Bill” who lives near the North Christian Church and who is helping to ensure that the lights are on every night), and my most dedicated students Tristin Moore and Guanyao Li. Thank you all very much  for helping with this project during its ideation, fabrication, construction, and installation process.

Light Harvest at CODA Paper Art 2017

appeldoorn
CODA Museum, Apeldoorn, Netherlands

This summer I was invited to participate in an international paper art biennial at CODA museum in Apeldoorn, the Netherlands. I exhibited Light Harvest, a large interactive installation art that is inspired by the intriguing protein structure of Light-harvesting Complexes (LHC). LHC contains pigments that absorb light and transfer the solar energy to chemical energy.

Three large crates,  about 37.5″ D x 22.5″ H x 73″ L, and one small crate, about 28.5″ D x 19″ L x 33.5″ H, were shipped from Bloomington, Indiana, to Apeldoorn, Netherlands, in early May.  My team and I arrived in Apeldoorn in late May. We rented a small Airbnb house near the museum for four days and were able to walk to the museum to work every day. It was an enjoyable experience. On the first day, the museum staff helped us set up the ceiling canopy in the exhibition space. On the second and the third day, we worked on the paper structure installation and the technical setup. On the fourth day, we worked on the projection mapping.

IMG_2824_sml

After we arrived in Apeldoorn, Kyle Overton and I decided that we would try a new way of coding in Processing to produce a different interactive experience than the previous installation at the Grunwald Gallery. As a result, Kyle spent most of the four days writing 1500 lines of the codes! The Processing outputs a smooth gradation of cool blue and green hues, to be projection-mapped onto the folded Light Harvest protein structure.  The green and blue gradation of light, projected from three projectors, mimics the deep water in which certain photosynthetic algae with a particular class of phycobilin pigments live. Each pigment, contained within LHC, has a unique absorption spectrum, allowing it to absorb certain wavelengths of light. These particular algae, appearing to be red, can carry out photosynthesis in deep water where the wavelengths of blue-green lights are most abundant by absorbing blue-green and reflecting red! When viewers enter the exhibition floor and interact with each chain of Light Harvest, the chain will turn into red-orange color. The interaction means to let the viewers know that photosynthesis is in action!

IMG_2839_sml
Entering the Light Harvest exhibition area, CODA Museum, Apeldoorn, Netherland

IMG_2868_sml
Installation showing one of the protein chains changing from cool blue-green to warm red-orange, CODA Museum, Apeldoorn, Netherlands

I would like to say thank you the CODA Museum staff, particularly Roosmarij Deenik and Helma Peters for helping to turn this project into a reality.

Project Credits:

Jiangmei Wu (with Kyle Overton and Susanne Ressl)

Production team: Steven Dixon, Siqiao Gao, Dexter Wu

Kaleidoscope 5 at Culver City, California

Ruga Lumina at 3labs, Culver City, California

I was invited to participate at Kaleidoscope 5 in 3Labs in Culver City, California, in May of 2017. The exhibition featured seven engaging installations from nine artists:  Alex Beim, Ben Jones, Kate Parsons and Ben Vance, Ara Peterson and Jim Drain, James Turrell, Akiko Yamashita, and myself. I installed the Ruga Lumina and the Anemoi Light Art.

About seven hundred or more guests attended the Kaleidoscope 5. According to the event organizer, the groups of artists’ “transcendent efforts harness the complex properties of light, skillfully manipulate real and virtual space, and utilize experimental forms of materiality to produce intriguing atmospheres that provoke unique physical and emotional responses.”

Artist Akiko Yamashita posts in front of Into the Light and Folded Light Art (Stefanie Keenan / Getty Images for Harper Sloane Productions)

Honorees Alexandra and Sean Parker post in front of Ruga Lumina and Folded Light Art. (Stefanie Keenan / Getty Images for Harper Sloane Productions)

Ruga Lumina at Detroit Center for Design + Technology, Detroit, Michigan

IMG_2202_edited_03_lighter
Ruga Lumina, 2017, Coroplast, Video Projection, Digital Sensor, Detroit Center for Design + Technology, Detroit, Michigan. Photography by Kyle Overton

Ruga Lumina, an ongoing design research project, is part of my solo show, Jiangmei Wu: Folding into Rhythm and Algorithm, that was on display From January 10, 2017, to February 10, 2017, at Detroit Center for Design + Technology in Detroit, Michigan. There was a closing on February 10, 2017. As part of the solo exhibition, I spoke at School of Architecture and Planning at Lawrence Technological University in Southfield, Michigan on January 12, 2017, at 4:00 pm.

In Ruga Lumina, the latest iteration of  Ruga Interior Skin, interactive digital projection techniques are used to actively engage body-space relationship. As the viewers move in the space, their movements are captured by the Kinect Sensors and the information is translated into color changing information in the digital projections to be projected onto the translucent interior skin that is fabricated from 4 mm Coroplast sheets. A scaffolding that was made of cardboard and wooden rods was used to frame the somewhat flexible topology of the interior skin to facilitate the positioning and connecting of over seventy individual panels. Since the folding mechanism in each of the Coroplast panel is a flexible hinge joint, the edges of the interior skin are reinforced with fixed braces to give rigidity to this otherwise flexible topology.  Both flexible and rigid,  the interactive interior skin draws the connection between the body and the interior space, placing the dichotomy of permanent vs. ephemeral, solid vs. light, and materiality vs. digital fabrication at the center of the concept.

Acknowledgment: This project is supported by New Frontier of Creativity and Scholarship and Center of Arts and Humanities Institute Fellowship, Indiana University. The artist will also like to credit Kyle Overton for his work on interaction technology.

la4a6550_edited_sml
Ruga Lumina 2017, Detroit Center for Design + Technolgy. Photography by Kyle Overton

LA4A6564
Ruga Lumina, 2017, Detroit Center for Design + Technology. Photography by Kyle Overton

LA4A6601_lighter
Ruga Lumina, 2017, Detroit Center for Design + Technology. Photography by Kyle Overton

Ruga Lumina, 2017, Detroit Center for Design and Technology. Photography by ManziYang

Video of Ruga Lumina deconstruction made of still photography. Photography by Joseph Caputo

Upcoming Exhibition: Light Harvest

la4a5489
A photograph of one of the three chains of Light Harvesting Complex. Photo courtesy of Kyle Overton

Light Harvest will be part of a group exhibit, (Re)imagining Science at Grunwald Gallery at Indiana University. It is also part of Themester 2016 exhibitions that is centered on the theme of Beauty. The show opens on Oct 14th 2016.

This project is inspired by D’Arcy Wentworth Thompson’s work on form and growth and the structural biology. In 1917, Thompson first published his magnum opus “On Growth and Form,” with a second edition appeared in 1942. Thompson studied the system of forms and structures found in all species of nature. He was the first bio-mathematician who used mathematical and geometric analysis to study the myriad living forms as a product of dynamics at work at cellular and tissue level within all organisms. For Thompson, the beautiful world we live in can be understood as an ethereal palpitation of waves of energy making up all things. Thompson’s book has inspired generations of artists and designs in search of beauty found in natural structures that reach into vastness and smallness beyond our human sensory range.

Proteins are essential to all forms of life on earth. Without proteins there would be no life as we know it. Proteins are small molecular machines with unique folding structures. Their various functions rely on their proper structural architecture; this is called the structure-functional relationship. Protein structures cannot be seen with the naked eye, therefore structural biologists use X-ray Crystallography to determine the structure of proteins, which can be visualized in 3D. This allows not just analyzing the folding structure to understand a protein’s function; it also reveals the beauty of nature’s design on the atomic level.

The particular protein that is presented in Light Harvest is called Light Harvesting Complex, which is the solar sail of the photosynthesis components in plants and some micro-organisms that uses bundled sunlight and together with water to create sugar and oxygen, thus providing the basis for life on this planet. It is made of three amino acid chains with 207 amino acids in each of the chains. Computer algorithm-based program Grasshopper was used to create the scaffolding of the three-dimensional protein chain. 642 pieces of roll out patterns, of which 207 were unique, were laser-cut and etched at Noblitt Fabricating in Columbus Indiana and were hand-folded and assembled at my studio at Smith Research Center. The material is high-tec kozo, a type of Japanese-made paper that comes from renewable mulberry trees.

img_1670
Layout of three canopies of Light Harvest at Smith Research Center

Video projection mapping technologies will be used to bring the light, colors, and the interactivity to live. For the artistic meanings and the science behind Light Harvest, please come to the show on Oct 14th and make sure to check out www.foldedlightart.com for more information.

Acknowledgement: This project is supported by New Frontier of Creativity and Scholarship and the Grunwald Gallery of Art at Indiana University, Bloomington, Indiana.

Project Credits: 

  • Science: Susanne Ressl (Assistant Professor, Structural Biology, Indiana University)
  • Technology: Kyle Overton (Ph.D. student, HCID, Indiana University)
  • Fabrication: Steve Dixon (Noblitt Fabricating, Columbus, Indiana)
  • Production: Siqiao Gao (Undergraduate student, Interior Design, Indiana University)

 

Folded Light Art at SIGGRAPH 2016

IMG_1448_edited

Folded Light Art, the design brand that I have established since 2013,  was chosen by SIGGRAPH Studio committee to be highlighted at SIGGRAPH 2016 in Anaheim, California. It was very interesting and exciting for me to be invited to SIGGRAPH, the world’s largest, most influential annual event in computer graphics and interactive techniques. At SIGGRAPH, participants were invited to have hands-on experience in paper folding and making small-scale folded lights.

The curator of SIGGRAPH Studio this year was Gerry Derksen, who is Associate Professor in Visual Communication Design at the Winthrop University. He described to me that there have been increasing interests at the culture of physical making with tangible materials among academics and professionals who primarily work in digital environment. Digital environment, unlimited by its virtual power, is quite different from paper folding, which is bounded by material realities and sets of mathematical and physical rules. So why do people who primarily work in digital environment become interested at paper folding? While paper folding can be simply done by hands, to design original crease patterns for paper folding is not so simple. Furthermore, to simulate the paper folding in digital space indeed is a very complicate computational task. Therefore paper folding is a perfect medium that bridges the digital world and the analog space. Understanding how paper folding works both in digital and analog environments might provide us with new insights on creating innovative digital tools to mitigate the difference between the virtual and the real.

Folded Light Art attracted great interests from SIGGRAPH community. Pieces of cardstock paper were laser cut and scored with sets of pre-designed crease patterns on site and were handed to participants to fold and assemble. During the five-day event at SIGGRAPH, there were such high demands and interests at Folded Light Art that laser-cut paper ran out frequently. The most common question I received from the participants at SIGGRAPH was how I came up with an original origami design . My answer to these questions was always the same: I came up with the design by folding and playing with a piece of paper by hand first.

Many thanks to Adam Roth, Haodan Tan, and many other student volunteers at SIGGRAPH for helping with this installation. Without all your help, the installation won’t have been possible.

Ruga Swan at Clay Center for the Arts and Sciences, Charleston, West Virginia

A few weeks ago I traveled to Charleston, West Virginia for a new installation of Ruga Swan at Clay Center for the Arts and Science, a 240,000-square-foot facility dedicated to promoting performing arts, visual arts, and the sciences. The installation went extremely well and fast. The staffs of Clay Center were very experienced and  professional. It took less than four hours to suspend Ruga Swan’s huge wing-like structure. Now Ruga Swan is siting at the center of a 20,000-square-foot exhibition space what is dedicated to eight other visionary origami artists including Erik Demain and Martin Demaine (both from MIT), Vicent Floderer (France), Paul Jackson (UK/Israel), Robert Lang, Yuko Nishimura (Japan), Richard Sweeney (UK) and Miri Golan (Israel).

FullSizeRender_6 FullSizeRender_7

FullSizeRender_11 FullSizeRender_12 FullSizeRender_13 FullSizeRender-5