Fold-A-Face Facemask: Custom-fit Origami Fashion of Pandemic

Illustration by Christine Wang

I have been working on prototypes for origami facemasks, or Fold-a-Face mask, since the beginning of the COVID-19 pandemic. The early iterations of the design were published by IU Research and by various national and local news media include NY Times, Herald Times, Indianapolis Monthly, etc. Since then I have been working with multiple industry partners on improving the design. One of the ideas is to make the origami masks custom-fit to individual faces. Below I will show a few conceptual ideas related to custom-fit origami masks.

The Fold-A-Face mask is based on origami techniques. Choose the textures, colors, and folding styles that suit you best.  It is folded from a single sheet of material and it can be flat packed for easy carrying.

Illustration by Christine Wang

How does it work?

  1. Take a digital side view photo of your face using the Fold-A-Face app. (Out of privacy concerns, the Fold-A-Face app will create a photo showing only the silhouette of your facial profile, not the details of your face). 
  2. Upload the photos to Fold-A-Face through the Fold-A-Face app and it will come up with the custom pattern that best fits your face.
  3. Choose the colors and folding patterns that best reflect your style.
Schematic drawings showing the concept of custom-fit origami facemasks.

Ford-A-Face masks are also available with three different folding choices to accentuate your facial structure. For each of the unique patterns, you can fold in three different ways to fold a face mask: Triangle, Square, and Diagonal. The Triangle fold gives your face a more cheerful appearance, the Square fold gives your face a more composed appearance, and the Diagonal Fold gives your face a more uplifting appearance. Fold-A-Face to suit your own style and mood!

Schematic drawing showing various folding choices.

Fold-A-Face masks are offered in a variety of hues, shades, and tints, as well. Choose anything, from jewel turquoise to Alice blue. Fold-A-Face uses three-layer materials to provide you protection again viruses and germs. The outer layer is an elastomeric nylon fabric that has a negative triboelectric effect and is hydrophobic, the middle layer is a filtration media that is consistent with the BFE95 material found in normal surgical masks, and the inner layer is material that is soft to your face and is hydrophilic.

Weaving Thick Miura surface

Weaving thick Miura surface

The doubly periodic Miura pattern was named after Japanese astrophysicist Koryo Miura, and is a well-known origami pattern for its rigid and flat foldabilities and its ability to deploy and retract in a restrictive way. Miura pattern is also known as rigid origami, which is concerned with folding structures using flat rigid sheet material with certain thicknesses, such as metal, wood, plastic, etc, that are joined by hinges. Rigid origami has also studied as Thick origami by Tomohiro Tachi. In this article, he proposed using a new method called Tapered Panels in addition to Hoberman’s symmetric Miura-ori vertex method and Trautz and Kunstler’s Slidable Hinges method. Recently, Tomohiro Tachi and Tom Hull presented Double-line rigid origami as an extension of the crease offset method of thick rigid origami.

Interestingly, Miura surface can also be understood as a generalized example of bi-foldable infinite polyhedral complexes, or zonohedra, that are bounded by parallelograms. Similar to the weaving of a cube or other zonohera that has been studied by artist Rinus Roelofs, a polyhedron weaving technique can be used to construct these polyhedral complexes. A Miura surface can therefore be woven by strips of paper (see a diagram below), or thick materials such as corrugated cardboard. More images below show the added thickness and the stylization to the woven Miura surface in 4 mm thick corrugated cardboard. It was interesting to learn that weaving Miura surface with thick and rigid panels is a lot easier than adding thickness to the Miura origami panels.

A diagram showing weaving of Miura surface using the concept of zonohedra proposed by H.S.M. Coxeter.
(a), (b) & (c) weaving Miura surface using corrugated cardboard. (d) & (e) using plastic board.

Weaving Infinite Bi-foldable Polyhedral Complexes

I have been collaborating with mathematician Matthias Weber on a new class of infinite bi-foldable polyhedral complexes. Currently, our initial result has been published at: I would like to showcase two examples of triply infinite bi-foldable polyhedral complexes: Butterfly and Dos Equis. I made Butterfly and Dos Equis using a polyhedral weaving technique. The material is Mi Teintes paper. I’m also including two nice rendered videos made by Weber.

To learn more about the mathematics (explained in layman’s terms by Weber) behind these fun infinite bi-foldable polyhedral complexes, or the process of how we found them, I encourage you to visit Weber’s blogs here:

Weber’s blog on Butterfly
Weber’s blog on Dos Equis

Butterfly has three vertex types: valency 4, 6, and 8. Butterfly is named after the vertex of valency 8 as it resembles a symmetrically balanced butterfly. This vertex is translated to create the triply periodic construction. Butterfly is made using a polyhedral weaving technique that employs a four-color complementary scheme. Each color represents a distinctive zone using the concept of zonohedron proposed by H.S.M. Coxeter. Each face is alternated and interwoven by two zones of two colors. A few deviations from the regularity are inserted to create the rhythmic changes.

An isometric view of Butterfly.

There are three vertex types in Dos Equis: two of valency 4 and one of valency 8. Dos Equis is named after the vertex of valency 8 as it resembles the image of an X. Using a four-color complementary scheme, each color represents a distinctive zone using the concept of zonohedron proposed by H.S.M. Coxeter. Each zone, using two unique unit patterns, is then folded and interwoven with other zones. Notice that the four colored zones, with its two unit patterns, and its under or over weaving alternations, create a total of sixteen design variations for the quadrilateral faces.

Dos Equis

Light Harvest: Interactive Sculptural Installation based on Folding and Mapping Proteins


Wu, J., Ressl, S. & Overton, K (2018). Light Harvest: Interactive Sculptural Installation based on Folding and Mapping Proteins, Digital Creativity, doi: 10.1080/14626268.2018.1533871.

Download the free PDF here:


Light Harvest is an interactive sculptural installation that explores a protein called Light-Harvesting Complex II (LHCII) in the realm of materials, digital fabrication, projection mapping and interaction design. This article gives an account of the making of Light Harvest, a collaboration between an artist/designer, a structural biologist, and an interaction design technologist. The artistic concepts in material construction and digital techniques are drawn from protein folding, sophisticated mapping processes in protein X-ray crystallography, and the remarkable abilities of LHCI proteins to convert full-spectrum visible sunlight to useful energy for life. Through its interactive installation, Light Harvest engages us in an appreciation and understanding of the biological processes studied and the scientific techniques used to study them.

Ruga Lumina: Folding Interior Skin with Dynamic Light


Wu, J. (2018). Ruga Lumina: Folding Interior Skin with Dynamic Light, Journal of Interior Design, Volume 43, Issue 2, pp. TBD. doi: 10.1111/joid.12123

Link to full paper in PDF


Ruga Lumina investigates body–space relationships by leveraging digital fabrication and interactive technologies. Ruga Lumina is a spatial construct in the form of a smart luminous “skin” made of thin sheets of folded material that respond to the movement of live bodies within and surrounding its interior space. Spatial occupancy is registered through the use of smart technology; sensor information activates illumination and lighting effects, which, in turn, prompts perceptual and expressive aesthetic qualities as affects. This visual essay gives an account of the construction of Ruga Lumina at two exhibition sites: Detroit Center for Design and Technology (DCDT) in Detroit, Michigan, and 3Labs in Culver City, California. This account describes how bodies can be read and registered upon a spatial surface that points to a potential to re‐envision fundamental notions of surface interiority.

Folding Helical Triangle Tessellations into Light Art


Wu, J. (2018). Folding Helical Triangle Tessellations into Light Art, Journal of Mathematics and Arts, Volume 12, Issue 1, pp. 19-33.

Link to full paper in PDF


This article concerns the artistic and perceptual quality of translucent light transmitted by an origami-inspired paper surface when a light source is placed behind it. It describes my geometric strategies in origami design to create light art through the luminous effect of gradations of light. I first present historical background and related work on origami-inspired paper light art and origami tessellation designs. Case studies follow, focusing on geometric strategies for helical triangle tessellations, considering specific design requirements for creating functional folded light art.

Method for Folding Flat, Non-rigid Materials to Create Rigid, Three-dimensional Structure


Wu. J. (October 31, 2017). Method for Folding Flat, Non-rigid Materials to Create Rigid, Three-dimensional Structures. Patent No: US 9,803,826 B2. Washington DC: The United States Patent and Trademark Office

Published_Patent in PDF

Priority Claim: The present application claims priority to U.S. Provisional Patent App. No. 61/893,519, filed Oct. 21, 2013, the entire disclosure of which is hereby expressly incorporated herein by reference.

Field: The present disclosure relates generally to creating rigid three-dimensional structures by folding flat, non-rigid materials. More particularly, the present disclosure relates to a method of folding a non-rigid material with a score or crease pattern into a three-dimensional structure for covering a light source.

Body, Form, Material and Surface Making of Ruga Interior Skin


Wu, J. (2017). Body, Form, Material and Surface Making of Ruga Interior Skin, Interiors: Design/Architecture/Culture, Volume 8, Issue 3, pp. 73-87. 2017

Link to full paper in PDF


In design history, the concept of ‘skin’ has been used to refer to the outermost tissue that encloses a physical body. So, if the concept of ‘skin’ can be understood as a generator of ideas for interiors that lie in between the flexible spaces around the body and the rigid spaces within the building, what new form and context can an interior skin take in adding to the contemporary interiority? Borrowing from the metaphor of ‘skin’ in fashion, interior design and architecture, Ruga Interior Skin (RIS) explores the ambiguous and conceptual realm connecting the act of wearing, inhabiting and its relationship between body, form, material, and surface-making of a novel interior semi-structural wall and partition. ‘Ruga’ is the Latin word for making wrinkles, creases, pleats, and folds. RIS is inspired by the use of wrinkling and folding to create flexible frameless topological forms that can be suspended in a way that is similar to a piece of cloth or textile. Both flexible and rigid, RIS draws the connection between the body and the interior surface, placing the dichotomy of permanent vs. ephemeral, solid vs. light, and material vs. digital at the center of the concept.

Ruga Swan at Clay Center for Arts and Sciences, Charleston, VA
Ruga Swan at Clay Center for Arts and Sciences, Charleston, VA

Applying Helical Triangle Tessellations in Folded Light Art (Bridges Conference Paper)


Wu, J. (2017). Applying Helical Triangle Tessellation in Folded Light Art. In D. Swart, C Séquin. & K. Fenyvesi (Eds.), Proceedings of Bridges 2017: Mathematical Connections in Art, Music, and Science (pp. 383-386), Phoenix, Arizona: Tessellation Publishing


This article describes how I created a collection of lamps made of folded sheets of material using helical triangle tessellations, which are also called Nojima patterns. I started by working with a periodic helical triangle pattern to fold a piece of light art that is shaped in a hexagonal column. I continued by modifying the periodic pattern into a semi-periodic design by adding variations so that the tessellation could be folded into a light art that is shaped in a twisted column. I further developed tessellations that consisted of self-similar helical triangles by using a geometric construction method. These self-similar helical triangles form algorithmic spirals. I folded the tessellation design into a work of light art that is shaped in a conical hexagonal form.

External Links:

Link to PDF