New Class in Advance Architecture Drawing in Spring 2020

Ruga Ribbon, 2020, by Jiangmei Wu

I’m finally offering an elective class that I have been wanting to teaching in Spring 2020: Advance Architecture Drawing! I will be introducing parametric design to the students in Eskenazi School of Art, Architecture, and Design. I’m hoping this class will also attract students from the School of Informatics, Computing, and Engineering. The projects will be ranging from designing small scale objects to large scale installations.

In the recent years, the culture of digital fabrication has heavily influenced the practice of architecture and interior design, as well as design pedagogy. This course aims to
further develop students’ advanced digital design and modeling skills by considering the digital-physical workfl ow in the context of contemporary interior design. The main software will be Rhino and Grasshopper. Rhino is an 3D CAD program that uses NURBS mathematical model to represent curves and free-form surfaces in digital environment. Grasshopper is a visual programming language and environment that works with Rhino, Grasshopper allows you to quickly change fundamental attributes of a complicated model, to make complex formations through repetitions of simple forms, and to use mathematical functions to control or generate shapes. In addition to designing in Rhino and Grasshopper, students will have hands-on experiences with a range of digital fabrication tools such as 3D printer, laser cutter, and digital cutter. Through a combination of exercises and projects, the students will design a set of interior objects, from small-scale lighting and furniture to large-scale interior partitions and surfaces.

Course Objectives:

• To be familiar with the culture of digital fabrication in the context of contemporary
interior design practice
• To understand how algorithm and data can be incorporated into the development
of fundamental design method and digital-physical work fl ow
• To be competent in the development of the fundamental design method including research, critical thinking, reiterative design process, design criticism, design communication
• To learn to incorporate the concept of digital-physical workflow into the development of the fundamental design method
• To learn to integrate algorithm and digital-physical workflow with the development
of the fundamental design method
• To be familiar with the digital fabrication tools such as 3D printer, laser cutter and digital cutter.

C481 Workshop on Digital Fabrication and Interior Design

IMG_0178

This post has been rewritten and published in IDEC Exchange: A Forum for Interior Design Education, Spring 2016.

Citation: Wu, J. (2016). Materialization Matters: Weekend Workshop on Digital Fabrication and Interior Design, IDEC Exchange: A Forum for Interior Design Education, Spring 2016

This one credit hour weekend workshop introduced design students to tools, work-flow, and considerations in digital fabrication and its creative application in contemporary interior design. In recent years, the culture of custom digital fabrication has heavily influenced the practice of architecture, interior design and design pedagogy. The focus of the workshop was to materialize a digital design to a 1:1 scale interior skin installation as a group. The learning goal of the workshop was to understand the basics of work-flow and considerations between digital design and physical making in the context of large-scale installation. Besides the hands-on making and learning, the students also had the opportunity to visit an industrial-scale fabrication shop, Noblitt Fabricating, in Columbus, Indiana.

The center of this workshop was the latest iteration of Ruga Interior Skin. The free-form geometric surface was modeled in Grasshopper and Rhino before the workshop. The main folding pattern was Yoshimura pattern. It was made up of 68 unique pieces of panels that were folded and connected to form a large semi-structural interior skin that stood about 8 feet in height, 15 feet in width and 12 feet in length. This was the first time I conducted this workshop, I was a bit nervous and not sure what to expect of the installation outcome. We started by folding the laser cut cardboard pieces, fabricated by Steve Dixon at Noblitt Fabricating, at 10 am on Saturday. By 1 pm, 68 unique pieces of cardboard were all folded and ready for assembly and installation. Because of the free-form geometric design, these 68 panels cannot be connected in flat surface. The only way to connect these panels is to hang them sequentially in segments and to allow the gravity to fold the pre-scored mountain and valley crease lines while connecting them using rivets, nuts and bolts. While this process proved to be a very difficult task, the students in the workshop were enthusiastic. This hands-on experience required them to self-organize and figure out a system to piece together the panels. In three hours, the large interior skin installation was completed! What a great job! Special thanks goes to Steve Dixon and to the following students who work extremely hard: Yueyang Chen, Madeline Collins, Anqi Fan, Flute Fu, Xinhui Fu, Renzhi Huang, Tianxing Shen, Erin Stump, Han Sun, Zhiyu Wang and Zhanhua Yan. Congratulations to you all!