Light Harvest at CODA Paper Art 2017

appeldoorn
CODA Museum, Apeldoorn, Netherlands

This summer I was invited to participate in an international paper art biennial at CODA museum in Apeldoorn, the Netherlands. I exhibited Light Harvest, a large interactive installation art that is inspired by the intriguing protein structure of Light-harvesting Complexes (LHC). LHC contains pigments that absorb light and transfer the solar energy to chemical energy.

Three large crates,  about 37.5″ D x 22.5″ H x 73″ L, and one small crate, about 28.5″ D x 19″ L x 33.5″ H, were shipped from Bloomington, Indiana, to Apeldoorn, Netherlands, in early May.  My team and I arrived in Apeldoorn in late May. We rented a small Airbnb house near the museum for four days and were able to walk to the museum to work every day. It was an enjoyable experience. On the first day, the museum staff helped us set up the ceiling canopy in the exhibition space. On the second and the third day, we worked on the paper structure installation and the technical setup. On the fourth day, we worked on the projection mapping.

IMG_2824_sml

After we arrived in Apeldoorn, Kyle Overton and I decided that we would try a new way of coding in Processing to produce a different interactive experience than the previous installation at the Grunwald Gallery. As a result, Kyle spent most of the four days writing 1500 lines of the codes! The Processing outputs a smooth gradation of cool blue and green hues, to be projection-mapped onto the folded Light Harvest protein structure.  The green and blue gradation of light, projected from three projectors, mimics the deep water in which certain photosynthetic algae with a particular class of phycobilin pigments live. Each pigment, contained within LHC, has a unique absorption spectrum, allowing it to absorb certain wavelengths of light. These particular algae, appearing to be red, can carry out photosynthesis in deep water where the wavelengths of blue-green lights are most abundant by absorbing blue-green and reflecting red! When viewers enter the exhibition floor and interact with each chain of Light Harvest, the chain will turn into red-orange color. The interaction means to let the viewers know that photosynthesis is in action!

IMG_2839_sml
Entering the Light Harvest exhibition area, CODA Museum, Apeldoorn, Netherland
IMG_2868_sml
Installation showing one of the protein chains changing from cool blue-green to warm red-orange, CODA Museum, Apeldoorn, Netherlands

I would like to say thank you the CODA Museum staff, particularly Roosmarij Deenik and Helma Peters for helping to turn this project into a reality.

Project Credits:

Jiangmei Wu (with Kyle Overton and Susanne Ressl)

Production team: Steven Dixon, Siqiao Gao, Dexter Wu

Upcoming Exhibition: Light Harvest

la4a5489
A photograph of one of the three chains of Light Harvesting Complex. Photo courtesy of Kyle Overton

Light Harvest will be part of a group exhibit, (Re)imagining Science at Grunwald Gallery at Indiana University. It is also part of Themester 2016 exhibitions that are centered on the theme of Beauty. The show opens on Oct 14th, 2016.

This project is inspired by D’Arcy Wentworth Thompson’s work on form and growth and the structural biology. In 1917, Thompson first published his magnum opus “On Growth and Form,” with a second edition appeared in 1942. Thompson studied the system of forms and structures found in all species of nature. He was the first bio-mathematician who used mathematical and geometric analysis to study the myriad living forms as a product of dynamics at work at cellular and tissue level within all organisms. For Thompson, the beautiful world we live in can be understood as an ethereal palpitation of waves of energy making up all things. Thompson’s book has inspired generations of artists and designs in search of beauty found in natural structures that reach into vastness and smallness beyond our human sensory range.

Proteins are essential to all forms of life on earth. Without proteins, there would be no life as we know it. Proteins are small molecular machines with unique folding structures. Their various functions rely on their proper structural architecture; this is called the structure-functional relationship. Protein structures cannot be seen with the naked eye. Therefore structural biologists use X-ray Crystallography to determine the structure of proteins, which can be visualized in 3D. This allows not just analyzing the folding structure to understand a protein’s function; it also reveals the beauty of nature’s design on the atomic level.

The particular protein that is presented in Light Harvest is called Light-Harvesting Complex (LHC), which is the solar sail of the photosynthesis components in plants and some micro-organisms that uses bundled sunlight and together with water to create sugar and oxygen, thus providing the basis for life on this planet. It is made of three amino acid chains with 207 amino acids in each of the chains. Computer algorithm-based program Grasshopper was used to create the scaffolding of the three-dimensional protein chain. 642 pieces of rollout patterns, of which 207 were unique, were laser-cut and etched at Noblitt Fabricating in Columbus Indiana and were hand-folded and assembled at my studio at Smith Research Center. The material is high-tech Kozo, a type of Japanese-made paper that comes from renewable mulberry trees.

img_1670
Layout of three canopies of Light Harvest at Smith Research Center

Video projection mapping technologies will be used to bring the light, colors, and the interactivity to live. For the artistic meanings and the science behind Light Harvest, please come to the show on Oct 14th and make sure to check out www.foldedlightart.com for more information.

Acknowledgement: This project is supported by New Frontier of Creativity and Scholarship and the Grunwald Gallery of Art at Indiana University, Bloomington, Indiana.

Project Credits: 

  • Science: Susanne Ressl (Assistant Professor, Structural Biology, Indiana University)
  • Technology: Kyle Overton (Ph.D. student, HCID, Indiana University)
  • Fabrication: Steve Dixon (Noblitt Fabricating, Columbus, Indiana)
  • Production: Siqiao Gao (Undergraduate student, Interior Design, Indiana University)